All Integration Formulas pdf

Integration

Integration formula

UPI ID:- achalup41-1@oksbi

Integration of the composite function

\(\int x^{n}dx=\frac{x^{n+1}}{n+1}+C, n\neq 1\)

\(\int \frac{1}{x}dx=logx+C\)

\(\int e^{x}dx=e^{x}+C \)

'C' is the Integration constant.

Integration formula of the Trigonometric function

\(\int sin x\hspace{2mm} dx=-cos x+C\)

\(\int cos x\hspace{2mm} dx=sin x+C\)

\(\int sec^{2}x\hspace{2mm} dx =tan x+C\)

\(\int cosec^{2}x\hspace{2mm} dx=-cotx+C\)

\(\int secx \hspace{1mm} tanx\hspace{2mm}dx = secx+C\)

\(\int cosecx \hspace{1mm} cotx\hspace{2mm}dx = -cosecx+C\)

\(\int tanx \hspace{2mm}dx = log(secx)+C\)

\(\int cotx \hspace{2mm}dx = log(sinx)+C\)

\(\int cosecx \hspace{2mm}dx = log(tan\frac{x}{2})+C\)

\(\int secx \hspace{2mm}dx = log\hspace{1mm}tan\left ( \frac{\pi }{4}+\frac{x}{2} \right )+C\)

'C' is the Integration constant.

Integration into Inverse Trigonometric Functions

\(\int \frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=sin^{-1}x+C\)

\(\int -\frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=cos^{-1}x+C\)

\(\int \frac{1}{1+x^{2}}\hspace{2mm}dx=tan^{-1}x+C\)

\(\int -\frac{1}{1+x^{2}}\hspace{2mm}dx=cot^{-1}x+C\)

\(\int \frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=sec^{-1}x+C \)

\(\int -\frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=-cosec^{-1}x+C\)

\(\int \frac{1}{a^{2}+x^{2}}dx=\frac{1}{a}tan^{-1}\left ( \frac{x}{a} \right )+C\)

\(\int \frac{1}{\sqrt{a^{2}-x^{2}}}dx=sin^{-1}\left ( \frac{x}{a} \right )+C\)

\(\int \frac{1}{x \sqrt{x^{2}-a^{2}}}dx=\frac{1}{a} sec^{-1}\left ( \frac{x}{a} \right )+C \)

'C' is the Integration constant.

Integration by substitution

\(\int \left ( ax+b \right )^{n}dx = \frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}, When\hspace{1mm} n\neq -1+C\)

\(\int\frac{1}{ax+b}dx=\frac{1}{a}log(ax+b)+C\)

\(\int e^{ax+b}dx=\frac{1}{a}e^{ax+b}+C\)

\(\int e^{ax+b}dx=\frac{1}{a}\frac{e^{ax+b}}{log_ee}+C\)

\(\int sin(ax+b)dx=-\frac{1}{a}cos(ax+b)+C\)

\(\int cos(ax+b)dx= \frac{1}{a}sin(ax+b)+C\)

\(\int sec^{2}(ax+b)dx= \frac{1}{a}tan(ax+b)+C\)

\(\int cosec^{2}(ax+b)dx= -\frac{1}{a}cot(ax+b)+C\)

\(\int sec(ax+b)tan(ax+b)dx= \frac{1}{a}sec(ax+b)+C\)
\(\int cosec(ax+b)cot(ax+b)dx= -\frac{1}{a}cosec(ax+b)+C\)

'C' is the Integration constant.

Few Special integrations

\(\int\frac{1}{\sqrt{x^2+a^2}}dx =log(x+\sqrt{x^{2}+a^{2}})+C \)

\(\int\frac{1}{\sqrt{x^2+a^2}}dx =log(x+\sqrt{x^{2}-a^{2}})+C \)

\(\int a^{x}\hspace{2mm}dx=\frac{a^{x}}{loga}+C\)

\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{1}{\sqrt{b^{2}-4ac}}log\frac{2ax+b-\sqrt{b^{2}-4ac}}{2ax+b+\sqrt{b^{2}-4ac}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} positive\)
\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{1}{\sqrt{b^{2}-4ac}}log\frac{2ax+b-\sqrt{b^{2}-4ac}}{2ax+b+\sqrt{b^{2}-4ac}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} positive\)
\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{2}{\sqrt{4ac-b^{2}}}tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^{2}}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} negative\)
\(\int \frac{px+q}{\sqrt{ax^{2}+bx+c}}dx= \frac{p}{a}\sqrt{ax^{2}+bx+c}+\left ( q-\frac{bp}{2a} \right )\int \frac{1}{\sqrt{ax^{2}+bx+c}}dx+C\)
\(\int\frac{1}{a\hspace{1mm}sinx+b\hspace{1mm}cosx}dx=\frac{1}{\sqrt{a^{2}+b^{2}}}log\left [ tan\left\{\frac{x}{2}+\frac{1}{2}tin^{-1}\frac{b}{a} \right\} \right ]+C\)

'C' is the Integration constant.

Integration of two functions or Integration by parts

\(\int f_{1}(x)f_{2}(x)\hspace{2mm}dx=f_{1}(x)\int F_{2}(x)dx-\int \left [ \left\{ \frac{d}{dx}f_{1}(x) \right\}.\int F_{2}(x)dx \right ]dx+C\)

\(\int e^{ax}cos \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}cos\hspace{1mm}bx+b\hspace{1mm}sin\hspace{1mm}bx)+C\)

\(\int e^{ax}sin \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}sin\hspace{1mm}bx-b\hspace{1mm}cos\hspace{1mm}bx)+C\)

\(\int \sqrt{a^{2}-x^{2}}dx=\frac{1}{2}\left [ x\sqrt{a^{2}-x^{2}}+a^{2}sin^{-1}(\frac{x}{a}) \right ]+C\)
\(\int \sqrt{a^{2}+x^{2}}dx=\frac{1}{2}\left [ x\sqrt{a^{2}+x^{2}}+a^{2}log(x+\sqrt{x^{2}+a^{2}}) \right ]+C\)
\(\int \sqrt{x^{2}-a^{2}}dx=\frac{1}{2}\left [ x\sqrt{x^{2}-a^{2}}-a^{2}log(x+\sqrt{x^{2}-a^{2}}) \right ]+C\)

\(\int\frac{1}{x^{2}-a^{2}}dx=\frac{1}{2a}log\frac{x-a}{x+a}+C, when\hspace{1mm} x> a \)

\(\int\frac{1}{a^{2}-x^{2}}dx=\frac{1}{2a}log\frac{a+x}{a-x}+C, when\hspace{1mm} x < a \)

'C' is the Integration constant.

Properties of Definite Integrals

\(\int_{a}^{b}f(x)dx = \int_{a}^{b}f(t)dt+C\)

\(\int_{a}^{b}f(x)\hspace{1mm}dx=lim_{h\to 0}h\left [ f(a)+f(a+h)+f(a+2h)+.........+f\left\{a+(n-1)h \right\} \right ] \)

\(\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx, when\hspace{1mm}a > b\)

\(\int_{a}^{b}f(x)dx = \int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx, when\hspace{1mm}a < c < b\)

\(\int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx+C\)

\(\int_{-a}^{a}f(x)dx =0, When\hspace {1mm}function \hspace {1mm}f(x), x\hspace {1mm} is\hspace {1mm} an\hspace {1mm} odd\hspace {1mm} function\)
\(\hspace {1.5cm}= 2\int_{0}^{a}f(x)dx, when\hspace {1mm} f(x), x\hspace {1mm} is\hspace {1mm} an\hspace {1mm} even\hspace {1mm} function\)
\(\int_{0}^{2a}f(x)dx =2\int_{0}^{a}f(x)dx, When\hspace {1mm} f(2a-x)=f(x)\)
\( \hspace {1.5cm} = 0, when f(2a-x) = -f(x)\)

'C' is the Integration constant.

Download pdf

Don't forget to share with friends and support🙏

Number system || Free pdf

Number system Questions

HCF and LCM

HCF and LCM Questions

Average Definition and formulas

Average Questions with solution

Inverse Trigonometric function formulas pdf

All formulas of differentiation pdf

Trigonometry all formula and function list pdf