All Integration Formulas pdf


Integration formula

UPI ID:- achalup41-1@oksbi

Contact Email ID:-

Integration of the composite function

\(\int x^{n}dx=\frac{x^{n+1}}{n+1}+C, n\neq 1\)

\(\int \frac{1}{x}dx=log|x|+C\)

\(\int e^{x}dx=e^{x}+C \)

'C' is the Integration constant.

Integration formula of the Trigonometric function

\(\int sin x\hspace{2mm} dx=-cos x+C\)

\(\int cos x\hspace{2mm} dx=sin x+C\)

\(\int sec^{2}x\hspace{2mm} dx =tan x+C\)

\(\int cosec^{2}x\hspace{2mm} dx=-cotx+C\)

\(\int secx \hspace{1mm} tanx\hspace{2mm}dx = secx+C\)

\(\int cosecx \hspace{1mm} cotx\hspace{2mm}dx = -cosecx+C\)

\(\int tanx \hspace{2mm}dx = log(secx)+C\)

\(\int tanx \space dx = -log(cosx)+C\)

\(\int cotx \hspace{2mm}dx = log(sinx)+C\)

\(\int cotx \space dx = -log(cosecx)+C\)

\(\int cosecx \hspace{2mm}dx = log(cosecx - cotx)+C\)

\(\int cosecx \hspace{2mm}dx = log(tan\frac{x}{2})+C\)

\(\int secx \hspace{2mm}dx = log(secx+tanx)+C\)

\(\int secx \hspace{2mm}dx = log\hspace{1mm}tan\left ( \frac{π}{4}+\frac{x}{2} \right )+C\)

'C' is the Integration constant.

Integration into Inverse Trigonometric Functions

\(\int \frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=sin^{-1}x+C\)

\(\int -\frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=cos^{-1}x+C\)

\(\int \frac{1}{1+x^{2}}\hspace{2mm}dx=tan^{-1}x+C\)

\(\int -\frac{1}{1+x^{2}}\hspace{2mm}dx=cot^{-1}x+C\)

\(\int \frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=sec^{-1}x+C \)

\(\int -\frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=-cosec^{-1}x+C\)

\(\int \frac{1}{a^{2}+x^{2}}dx=\frac{1}{a}tan^{-1}\left ( \frac{x}{a} \right )+C\)

\(\int \frac{1}{\sqrt{a^{2}-x^{2}}}dx=sin^{-1}\left ( \frac{x}{a} \right )+C\)

\(\int \frac{1}{x \sqrt{x^{2}-a^{2}}}dx=\frac{1}{a} sec^{-1}\left ( \frac{x}{a} \right )+C \)

'C' is the Integration constant.

Integration by substitution

\(\int \left ( ax+b \right )^{n}dx = \frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}, When\hspace{1mm} n\neq -1+C\)


\(\int e^{ax+b}dx=\frac{1}{a}e^{ax+b}+C\)

\(\int e^{ax+b}dx=\frac{1}{a}\frac{e^{ax+b}}{log_ee}+C\)

\(\int sin(ax+b)dx=-\frac{1}{a}cos(ax+b)+C\)

\(\int cos(ax+b)dx= \frac{1}{a}sin(ax+b)+C\)

\(\int sec^{2}(ax+b)dx= \frac{1}{a}tan(ax+b)+C\)

\(\int cosec^{2}(ax+b)dx= -\frac{1}{a}cot(ax+b)+C\)

\(\int sec(ax+b)tan(ax+b)dx= \frac{1}{a}sec(ax+b)+C\)
\(\int cosec(ax+b)cot(ax+b)dx= -\frac{1}{a}cosec(ax+b)+C\)

'C' is the Integration constant.

Few Special integrations

\(\int\frac{1}{\sqrt{x^2+a^2}}dx =log(x+\sqrt{x^{2}+a^{2}})+C \)

\(\int\frac{1}{\sqrt{x^2-a^2}}dx =log(x+\sqrt{x^{2}-a^{2}})+C \)

\(\int\frac{1}{\sqrt{1+x^2}}dx =log(x+\sqrt{1+x^{2}})+C \)

\(\int\frac{1}{\sqrt{x^2-1}}dx =log(x+\sqrt{x^{2}-1})+C \)

\(\int\frac{1}{x^{2}-a^{2}}dx=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right |+C, when\hspace{1mm} x> a \)

\(\int\frac{1}{a^{2}-x^{2}}dx=\frac{1}{2a}log\left|\frac{a+x}{a-x}\right |+C, when\hspace{1mm} x < a \)

\(\int a^{x}\hspace{2mm}dx=\frac{a^{x}}{loga}+C\)

\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{1}{\sqrt{b^{2}-4ac}}log\frac{2ax+b-\sqrt{b^{2}-4ac}}{2ax+b+\sqrt{b^{2}-4ac}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} positive\)
\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{1}{\sqrt{b^{2}-4ac}}log\frac{2ax+b-\sqrt{b^{2}-4ac}}{2ax+b+\sqrt{b^{2}-4ac}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} positive\)
\(\int \frac{1}{ax^{2}+bx+c}dx=\frac{2}{\sqrt{4ac-b^{2}}}tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^{2}}}+C, When\hspace{1mm}b^{2}-4ac\hspace{1mm} is\hspace{1mm} negative\)
\(\int \frac{px+q}{\sqrt{ax^{2}+bx+c}}dx= \frac{p}{a}\sqrt{ax^{2}+bx+c}+\left ( q-\frac{bp}{2a} \right )\int \frac{1}{\sqrt{ax^{2}+bx+c}}dx+C\)
\(\int\frac{1}{a\hspace{1mm}sinx+b\hspace{1mm}cosx}dx=\frac{1}{\sqrt{a^{2}+b^{2}}}log\left [ tan\left\{\frac{x}{2}+\frac{1}{2}tan^{-1}\frac{b}{a} \right\} \right ]+C\)

'C' is the Integration constant.

Integration of two functions or Integration by parts

\(\int f_{1}(x)f_{2}(x)\hspace{2mm}dx=f_{1}(x)\int F_{2}(x)dx-\int \left [ \left\{ \frac{d}{dx}f_{1}(x) \right\}.\int F_{2}(x)dx \right ]dx+C\)

\(\int e^{ax}cos \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}cos\hspace{1mm}bx+b\hspace{1mm}sin\hspace{1mm}bx)+C\)

\(\int e^{ax}cos \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{\sqrt{a^{2}+b^{2}}}cos \left[ bx - tan^{-1}(\frac{b}{a}) \right ]+C\)

\(\int e^{ax}sin \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}sin\hspace{1mm}bx-b\hspace{1mm}cos\hspace{1mm}bx)+C\)

\(\int e^{ax}sin \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{\sqrt{a^{2}+b^{2}}}sin \left[ bx - tan^{-1}(\frac{b}{a}) \right ]+C\)

\(\int \sqrt{a^{2}-x^{2}}dx=\frac{1}{2}\left [ x\sqrt{a^{2}-x^{2}}+a^{2}sin^{-1}(\frac{x}{a}) \right ]+C\)
\(\int \sqrt{a^{2}+x^{2}}dx=\frac{1}{2}\left [ x\sqrt{a^{2}+x^{2}}+a^{2}log(x+\sqrt{x^{2}+a^{2}}) \right ]+C\)
\(\int \sqrt{x^{2}-a^{2}}dx=\frac{1}{2}\left [ x\sqrt{x^{2}-a^{2}}-a^{2}log(x+\sqrt{x^{2}-a^{2}}) \right ]+C\)

'C' is the Integration constant.

How to choose the first and second functions in Integration by parts

you can choose the first and second functions through a simple trick. Remember a word 'ILATE'

I → Inverse function (e.g.- sin-1 x, cos-1 x)

L → Logarithmic function (e.g.- log x)

A → Algebraic function (e.g.- x3, x4)

T → Trigonometric function (e.g.- sin x, cos x)

E → Exponatial function (e.g.- e2)

e.g.- \(\int x^2 \space logx \space dx\)

x2 → A → f2(x)

log x → L → f1(x)

\(=\int logx \space x^2 \space dx\)

\(=log x \int x^2 dx - \left [ \int \left ( \frac {d}{dx} log x \int x^2 \right ) dx \right ]\)

\(=logx \int x^2 dx - \left [ \int \frac {1}{x} \frac {x^3}{3} dx \right ]\)

\(=logx \frac {x^3}{3} - \left [ \int \frac {x^2}{3} dx \right ]\)

\(=\frac {x^3}{3} logx - \frac {x^3}{9}+c\)

Definite Integration

Properties of Definite Integrals

👉\(\int_{a}^{b}f(x)dx = \int_{a}^{b}f(t)dt+C\)

👉\(\int_{a}^{b}f(x)\hspace{1mm}dx=lim_{h\to 0}h\left [ f(a)+f(a+h)+f(a+2h)+.........+f\left\{a+(n-1)h \right\} \right ] \)

👉\(\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx, when\hspace{1mm}a > b\)

👉\(\int_{a}^{b}f(x)dx = \int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx, when\hspace{1mm}a < c < b\)

👉\(\int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx+C\)

👉\(\int_{-a}^{a}f(x)dx =0, When\hspace {1mm}function \hspace {1mm}f(x), x\hspace {1mm} is\hspace {1mm} an\hspace {1mm} odd\hspace {1mm} function\)
\(\hspace {1.5cm}= 2\int_{0}^{a}f(x)dx, when\hspace {1mm} f(x), x\hspace {1mm} is\hspace {1mm} an\hspace {1mm} even\hspace {1mm} function\)
👉\(\int_{0}^{2a}f(x)dx =2\int_{0}^{a}f(x)dx, When\hspace {1mm} f(2a-x)=f(x)\)
\( \hspace {1.5cm} = 0, when f(2a-x) = -f(x)\)

👉 If \(\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx\) then,

⋆ \(\int_{0}^{b} f(x) dx = \int_{0}^{b} f(b-x) dx\)

⋆ \(\int_{-a}^{a} f(x) dx = \int_{-a}^{a} f(-x) dx\)

👉 If f( a + b - x) = f(x) then,

\(\int_{a}^{b}x f(x) dx = \frac {a+b}{2}\int_{a}^{b} f(x) dx\)

'C' is the Integration constant.

Definite integration Formula

\(\int_{0}^{\frac {π}{2}} log(sinx) dx = - \frac {π}{2} log 2 \)

\(\int_{0}^{\frac {π}{2}} log(cosx) dx = - \frac {π}{2} log 2 \)

\(\int_{0}^{\frac {π}{2}} log(secx) dx =  \frac {π}{2} log 2 \)

\(\int_{0}^{\frac {π}{2}} log(cosecx) dx =  \frac {π}{2} log 2 \)

\(\int_{0}^{\frac {π}{2}} log(tanx) dx = 0\)

\(\int_{0}^{\frac {π}{2}} log(cotx) dx = 0\)

\(\int_{a}^{b} \frac {f(x)}{f(x)+f(a+b-x)}dx = \frac {b-a}{2}\)

\(\int_{a}^{b} \frac {1}{a^2cos^2x+b^2sin^2x}dx = \frac {π}{2ab}\)

Leibnitz Theorem

If f (x) = \(\int_{g(x)}^{h(x)} f (t) dt \) then,

\(\frac {d}{dx} f (x) = f  \left ( h (x) \right ) \frac {d}{dx} h (x) - f \left ( g(x) \right ) \frac {d}{dx} g (x)\)

Download pdf

Don't forget to share with friends and support🙏

Number system || Free pdf

Number system Questions


HCF and LCM Questions

Average Definition and formulas

Average Questions with solution

Inverse Trigonometric function formulas pdf

All formulas of differentiation pdf

Trigonometry all formula and function list pdf